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Abstract
Conversational Recommender Systems (CRSs) aim to provide per-
sonalized recommendations by interacting with users through
conversations. Most existing studies of CRS focus on extracting
user preferences from conversational contexts. However, due to
the short and sparse nature of conversational contexts, it is diffi-
cult to fully capture user preferences by conversational contexts
only. We argue that multi-modal semantic information can en-
rich user preference expressions from diverse dimensions (e.g., a
user preference for a certain movie may stem from its magnif-
icent visual effects and compelling storyline). In this paper, we
propose a multi-modal semantic graph prompt learning framework
for CRS, named MSCRS. First, we extract textual and image fea-
tures of items mentioned in the conversational contexts. Second, we
capture higher-order semantic associations within different seman-
tic modalities (collaborative, textual, and image) by constructing
modality-specific graph structures. Finally, we propose an inno-
vative integration of multi-modal semantic graphs with prompt
learning, harnessing the power of large language models to compre-
hensively explore high-dimensional semantic relationships. Experi-
mental results demonstrate that our proposed method significantly
improves accuracy in item recommendation, as well as generates
more natural and contextually relevant content in response genera-
tion. Code and extended multi-modal CRS datasets are available at
https://github.com/BIAOBIAO12138/MSCRS-main.

CCS Concepts
• Information systems→Users and interactive retrieval; Rec-
ommender systems.
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1 INTRODUCTION
Conversational Recommender Systems (CRSs) [5, 19, 34], as an
emerging research direction that integrates natural language pro-
cessing and recommendation technologies, aim to precisely capture
users’ preferences [14] through multi-turn conversations and thus
provide personalized recommendations. Early CRS [13, 21, 28, 29,
40] primarily focused on analyzing and modeling user preferences
from conversational contexts. However, due to the limited nature of
conversational contexts (e.g., short and sparse), relying solely on ex-
tracting user preferences from conversations makes it challenging
to achieve personalized modeling. This results in recommendations
being confined to common options and failing to capture more
granular user needs, thus affecting accuracy.

Accordingly, to overcome this shortcoming, some approaches at-
tempt to introduce external knowledge, including structured knowl-
edge graph [2, 33], hypergraph [47], unstructured item reviews
[26, 50], metadata [42], and entities appearing in similar conver-
sations [6] to enhance the user representation for improving CRS.
Although these methods have made significant progress in the field
of CRS, they mainly focus on a single textual modality and fail to
fully utilize the rich multi-modal semantic information of items. As
shown in Figure 1, users’ descriptions of their preferences within
a single conversation are often based on their rich multi-modal
experiences involving visual and textual information in reality. We
argue that leveraging multi-modal semantic information is highly
helpful for modeling user preferences comprehensively. First, the
multi-modal features of items (e.g., posters, trailers, reviews) enrich
user preference expressions from different perspectives, capturing
users’ multi-modal preferences that cannot be fully expressed solely
through conversational contexts. Second, collaborative information,
as a type of multi-modal semantic information, provides an extra
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: Good morning.

: Hello,what can I do for you?

Conversation History
Traditional CRS 

Approach
         : I recommend you watch 
The Sixth Sense.

Textual-modality
Knowledge

Image-modality
Knowledge

Collaborate-
modality Knowledge

MSCRS

       : I recommend The Sixth 
Sense and Shutter Island. Both 
films have stunning visuals, 
intense psychological tension, 
captivating plot twists, and a 
chilling atmosphere.

   :Any thrilling and suspenseful movies 
to recommend? Something like Get Out, 
with intense psychological tension,  plot 
twists, an eerie visual atmosphere.

Involved  Multi-modal Features  

Figure 1: Comparison between traditional CRS models and
our MSCRS model.

perspective on user relationships (e.g., analyzing the same enti-
ties mentioned in different user conversations can uncover latent
preference connections). The combination of collaborative infor-
mation with multi-modal features not only enhances the modeling
of explicit user preferences but also enables better identification of
implicit needs.

Although we highlight the potential of multi-modal semantic
information, integrating these different modalities during the con-
versation remains a challenge. Many existing methods enhance
entity representations by incorporating external information (e.g.,
reviews [26] and metadata [50]). However, it is well known that
a semantic gap exists between conversational context and these
external data, due to the inconsistencies in expression form and
information structure between them, complicating the direct in-
tegration of different data sources. For instance, users expressed
preferences in conversations are often subjective sentiments de-
scribed through natural language, whereas reviews and metadata
tend to contain more objective item characteristics and user evalua-
tions. This makes it difficult to align semantics among different data
sources, eventually affecting the performance of recommendations.
While there have been some research attempts to directly fuse dif-
ferent data sources (e.g., contrastive learning [50]), the quest to
align different modality data can be counterproductive because of
the unique semantic associations within each modality. To address
these challenges, in this paper, we propose a novel Multi-modal
Semantic graph prompt learning framework for CRS (MSCRS).
Specifically, first, we extract textual descriptions of items by em-
ploying large language models (LLMs) and extract images of items
from an external database (i.e., IMDb1 in this work). Afterward, we
utilize pre-trained models to extract textual and image features of
the items. Second, as direct alignment of different modality features
may destroy the intra-modal semantic associations, we construct
a modal-specific semantic graph for the semantic features of each
modality. For collaborative modality, we extract entities (including
items and item-related entities) from conversational contexts and
construct a collaborative semantic graph based on the co-mention
frequency of these entities. For the textual and image modalities,
we construct a textual semantic graph and an image semantic graph
by exploiting intra-modal feature similarity based on the extracted
textual and image features. By sharing the initial embeddings of
all semantic graphs, we achieve an effective fusion of the three se-
mantic graphs. This approach avoids direct fusion and alignment of

1https://www.imdb.com

different modality features while effectively preserving the seman-
tic relationships within each modality. Third, we propose a novel
approach that integrates multi-modal semantic graphs (textual se-
mantic graph, image semantic graph, and collaborative semantic
graph) with LLMs. This integration leverages the advantages of
graph neural networks (GNNs) in aggregating neighborhood infor-
mation, providing topological insights to LLMs. This also enables
LLMs to fully exploit high-dimensional semantic associations, guid-
ing the selection of relevant information from textual inputs and
controlling the generation process. In this way, it not only improves
the performance of the recommendation task but also generates
more expressive responses for the conversation task. We summarize
our contributions as follows:
• We propose a novel CRS model, MSCRS, which integrates multi-
modal semantic information, including collaborative information
and multi-modal features. To the best of our knowledge, this is
the first effort to leverage both collaborative information and
multi-modal item features for generation-based CRS.

• MSCRS constructs semantic graphs based on intra-modal rela-
tions and avoids the cross-modal semantic gap via shared em-
bedding. Additionally, it proposes a novel framework to combine
multi-modal semantic graphs with prompt learning, which lever-
ages LLMs to explore higher-order semantic associations, en-
abling more accurate user preference modeling and more natural
response generation.

• To support multi-modal CRS research, we supplemented the
multi-modal features for two widely used CRS datasets. Experi-
mental results on two widely used benchmark datasets demon-
strate that our proposed MSCRS outperforms state-of-the-art
baselines in both item recommendation and response generation.

2 RELATEDWORK
2.1 Conversational Recommendation
As dialogue systems [32, 41, 44] have rapidly evolved, CRS [5, 14, 34]
have become a thriving field of research. CRS aims to discern user
preferences through multi-turn interactions and suggest items that
users might find appealing. Current CRS can generally be divided
into two categories: attribute-based CRS and generation-based CRS.

Attribute-based CRS [7, 17, 34] typically aims to enhance recom-
mendation performance and reduce the number of dialogue turns
required to complete recommendation tasks. They focus on ask-
ing clarifying questions [27, 51, 52] and gradually identifying the
best candidate set based on user preferences. For example, many
studies typically employed reinforcement learning [7, 16, 17] or
bandit-based approaches [20], to optimize the long-term benefits
of asking clarifying questions.

Generation-based CRS [1, 6, 36, 47, 53, 54] emphasizes user in-
teraction through natural language dialogue, intending to provide
accurate recommendations and coherent responses, thereby en-
hancing its relevance to real-world application scenarios. For in-
stance, Chen et al. [4] proposed a method that incorporates external
knowledge to enhance recommendation and conversation effec-
tiveness. Zhou et al. [48] proposed entity-based and word-based
knowledge graphs to enrich entity modeling and generate high-
quality responses. Zhou et al. [50] considered three types of data,
i.e., reviews, knowledge graphs, and conversational contexts, and

https://www.imdb.com
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designed a coarse-to-fine contrastive learning approach to integrate
these different data types. Besides knowledge graphs, Wang et al.
[36] integrated recommendation and conversation tasks into an
LLM through a unified prompt learning framework. Dao et al. [6]
examined the application of semantically similar conversational
contexts to enhance soft prompts in prompt learning. However,
users’ preferences are often based on their past multi-modal experi-
ences, making the multi-modal features of items crucial for model-
ing user preferences. To this end, different from the aforementioned
studies, we incorporate the multi-modal semantic information of
items into CRS.

2.2 Multi-modal Recommendation
Multi-modal recommendation enhances performance by leveraging
the multi-modal features of items. Early approaches [11, 39] typi-
cally incorporate multi-modal features of items as a complement
to ID features within the collaborative filtering framework. Due to
the development of GNNs, an increasing number of studies [37, 39]
combine multi-modal features with graphs. For example, Wei et al.
[39] proposed user and item representations in different modalities
through specific modality graph structures. Zhang et al. [43] con-
sidered specific modality semantic graphs and integrated them with
graph-based collaborative filtering methods. To address the seman-
tic gap between different modalities, Zhou et al. [49] proposed a
novel method and aligned these features through contrastive learn-
ing. Similarly, Wei et al. [37] employed adversarial learning to learn
user and item representations across different modalities and fuse
these representations through cross-modal contrastive learning.
Besides contrastive learning, Wei et al. [38] fused user preferences
from different modalities through ranking distillation [35]. Unlike
the approaches mentioned above, we generate various semantic
graphs and combine them with prompt learning in the CRS sce-
nario. This allows LLMs to understand the topological structure
of GNNs, thereby guiding the generation of recommendation and
conversation tasks for CRSs.

3 PRELIMINARIES
We denote the set of items by I = {𝑖1, 𝑖2, . . . , 𝑖𝑁 } and the set of con-
versational contexts by S = {𝑠1, 𝑠2, . . . , 𝑠𝑀 }. In the conversations
S, we extract all entities involved into the set E = {𝑒1, 𝑒2, . . . , 𝑒𝐾 },
with I ⊆ E. 𝑁 is the number of items,𝑀 is the number of conver-
sational contexts, and 𝐾 is the number of all entities. Additionally,
we collect the multi-modal features of items, denoted as 𝑥𝑚

𝑖
∈ R𝑑𝑚 ,

where 𝑑𝑚 denotes the dimension of the feature, and 𝑚 ∈ {𝑡, 𝑣},
where 𝑡 denotes textual modality and 𝑣 denotes image modality.
A conversational context 𝑠 ∈ S is represented as a collection of
utterances 𝑐 , expressed as 𝑠 = {𝑐𝑏 }𝑛𝑏=1. In the 𝑏-th turn of the con-
versation, each utterance 𝑐𝑏 consists of a sequence of words 𝑤 ,
expressed as 𝑐𝑏 = {𝑤 𝑗 }𝑚𝑗=1. The set of words is denoted byW. As
the conversation progresses, utterances are aggregated into a con-
versation history. CRS uses this history to infer user preferences
and generate conversation responses. During the 𝑏-th turn, the
recommender component recommends a set of candidate items
from the complete item set I based on the modeled user prefer-
ences. Meanwhile, the conversation component generates the next
utterance 𝑐𝑏 in response to the preceding conversation.

4 METHODOLOGY
Our approach consists of four main parts, as shown in Figure 2.
First, we extract the corresponding multi-modal data for items and
then encode them. Second, we introduce the multi-modal semantic
graph modeling component, which primarily integrates the pro-
posed specific semantic graphs of multiple modalities. Finally, we
elaborate on our methods for recommendation and conversation
tasks through multi-modal semantic graph prompt learning.

4.1 Multi-modal Feature Encoding
As shown in Figure 2, our model primarily considers three types of
data: conversation history, textual descriptions of items, and image
features of items. Next, we will introduce the feature extraction
and encoding methods for each of these three types of data.
Encoding Conversation History. Like previous work [48, 50],
we map the items (e.g., movies) and related entities (e.g., actors) in
the conversation history to the knowledge graph DBpedia [2] to
capture the intricate interconnections between entities. By incor-
porating the knowledge graph DBpedia, we enhance the semantic
information of these entities. The knowledge graph G𝑘𝑔 consists
of a set of entities E and a set of edges R. It uses triples ⟨𝑒1, 𝑟 , 𝑒2⟩
to store semantic facts, where 𝑒1, 𝑒2 ∈ E represent items or item-
related entities, and 𝑟 ∈ 𝑅 denotes the relationship between 𝑒1
and 𝑒2. We apply R-GCN [31] for encoding G𝑘𝑔 . Specifically, the
representation of node 𝑒 at the (𝑙 + 1)-th layer is computed as:

n(𝑙+1)𝑒 = 𝜎 (
∑︁
𝑟 ∈R

∑︁
𝑒′∈E𝑟

𝑒

1
𝑍𝑒,𝑟

W(𝑙 )
𝑟 n(𝑙 )

𝑒′ +W(𝑙 )n(𝑙 )𝑒 ), (1)

where n(𝑙 )
𝑒 represents the embedding of node 𝑒 at the 𝑙-th layer,

and E𝑟𝑒 refers to the set of neighboring nodes for 𝑒 associated with
relation 𝑟 . The matrixW(𝑙 ) applies a learnable transformation to
the node embeddings at the 𝑙-th layer, and W(𝑙 )

𝑟 transforms the
embeddings of neighboring nodes connected by relation 𝑟 using a
relation-specific matrix. The factor𝑍𝑒,𝑟 normalizes the contribution
of each neighboring node.
Encoding Textual Descriptions of Items. Based on the extensive
general knowledge of existing LLMs, we employ the powerful GPT
language model (GPT-4o) to extract textual descriptions 𝑣𝑡

𝑖
for an

item 𝑖:
𝑣𝑡𝑖 = FGPT (𝑖;𝜃𝑝 ), (2)

where 𝜃𝑝 is the prompt template, 𝑣𝑡
𝑖
represents the text description

generated by FGPT. The specific prompt template is provided in
Figure 3. After generating the textual description 𝑣𝑡

𝑖
, we utilize the

pre-trained model RoBERTa [25] to encode it:

𝑥𝑡𝑖 = AvgPool
(
FRoBERTa (𝑣𝑡𝑖 ;𝜃𝑟 )

)
, (3)

where AvgPool represents the average pooling operation, 𝜃𝑟 de-
notes all the parameters of RoBERTa. Finally, we obtain 𝑋 𝑡 =

{𝑥𝑡1, 𝑥
𝑡
2, 𝑥

𝑡
3, . . . , 𝑥

𝑡
𝑁
}, which denotes the textual features of all items.

Encoding Image Features of Items. The visual features of items
contain rich semantic information. We collect multiple still images
{𝑚𝑣1,𝑚

𝑣
2, . . . ,𝑚

𝑣
𝑙
} of item 𝑖 using web scraping from IMDb. Then,

we extract the image representations corresponding to the item 𝑖

using the pre-trained model ViT [9]:

𝑍𝑖 = {𝑧𝑣1, 𝑧
𝑣
2, . . . , 𝑧

𝑣
𝑙
} = FViT (𝑚𝑣1,𝑚

𝑣
2, . . . ,𝑚

𝑣
𝑙
;𝜃𝑣). (4)
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: Good morning.

: Hello,what can I do for you?

: I recently watched the movie 
Blade Runner. Could you 
recommend some similar films?

: I recommend you watch 
Star Wars and Blade Runner 
2049, as they both star 
Harrison Ford.

Conversation History

Textual feature of items 

Image feature of items

prompt

Blade Runner Star Wars Blade Runner
2049

Blade Runner explores the complex 
relationship between humanity and 
artificial intelligence, reflecting on 
the meaning of memory and identity 
through the existence of replicants.

 E
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 E
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b

Multi-modal Semantic Graph Prompt for Recommendation

Conversation History RoBERTa

DialogGPT

Matching

Multi-modal Semantic Graph Prompt for Conversation

All Conversation 
History

M
apping

Look Table

Look Table

Mentioned 
Entities

Fuse

Fused Entity 
Representations

Recommendation 
Task Prompt

Alien: CovenantI,Robot

0.7 0.6

Conversation 
History

Fuse

DialogGPTResponse

Conversation
Task Prompt

Fused conversation 
Representations

Conversation 
HistoryRoBERTa

Light-G
C

N

C
ov Em

b

Collaborative 
Semantic Graph 

Knowledge Graph

Fuse

Correlation Sem-
antic Mapping

Figure 2: The framework of MSCRS.

Please provide a comprehensive and detailed description of the 
movie '{movie_name}', including the following aspects, with 
each description limited to 30 tokens:
**Theme**: The core idea or main themes explored in the 
movie, such as survival, isolation, or moral choices.
**Emotion**: The primary emotional impact of the film on 
viewers, such as fear, hope, tension, or joy.
**Cultural Significance**: Explain the cultural and societal 
impact of the movie. How does it contribute to or influence the 
genre, and what discussions or reflections does it provoke?
**Plot Overview**: Provide a brief summary of the film's 
plot, focusing on key elements and the setting.

Figure 3: The prompt template.

Then, we calculate the average of these embeddings to obtain
the image feature representation for each item 𝑖:

𝑥𝑣𝑖 =
1
𝑙

𝑙∑︁
𝑗=1

𝑧𝑣𝑗 , (5)

where 𝑙 denotes the number of images of the item 𝑖 , 𝑥𝑣
𝑖
represents

the image feature representation of item 𝑖 . Finally, we obtain the
image features of all items as 𝑋 𝑣 = {𝑥𝑣1 , 𝑥

𝑣
2 , 𝑥

𝑣
3 , . . . , 𝑥

𝑣
𝑁
}.

After encoding, we can generate representations for the textual
features of items, image features of items, and knowledge graph
features of all entities. Next, we explore how to model and fuse
these multi-modal features to obtain a unified representation.

4.2 Multi-modal Semantic Graph Modelling
Collaborative Semantic Graph. Although the knowledge graph
models the complex real-world knowledge among global entities
to some extent, it still faces issues such as noise, errors, inconsis-
tent data, and “data silos". These problems can impact the accuracy

and reliability of downstream recommendation tasks. To address
these challenges, we introduce the collaborative semantic graph.
The collaborative semantic graph models the relationships between
entities from a co-mention perspective, thereby enhancing the struc-
tural information of the entities. The collaborative semantic graph
G𝑐 = (E,R𝑐 ), where R𝑐 is the set of edges. The matrix C ∈ R𝐾×𝐾

is a sparse matrix representing the co-mention counts between
entities, where 𝐾 is the total number of entities. Specifically, the
elements of the matrix are defined as:

C𝑖, 𝑗 =
𝑌∑︁
𝑦=1

count(𝑒𝑖 , 𝑒 𝑗 | 𝑄𝑦), (6)

where 𝑄𝑦 = [𝑒1, 𝑒2, . . . , 𝑒𝐾 ] (𝑒 ∈ E) denote the entities that appear
in a single conversation, and 𝑌 is the total number of conversa-
tional contexts in the train data. Each element C𝑖, 𝑗 quantifies the
frequency with which entities 𝑒𝑖 and 𝑒 𝑗 are co-mentioned across all
conversations, thereby revealing their potential associations. This
matrixC serves as the foundation for constructing the collaborative
semantic graph G𝑐 , where an edge is established between entities
𝑒𝑖 and 𝑒 𝑗 if their co-mention count exceeds a predefined threshold,
reflecting their semantic relationships.

As shown in Eq. (1), we adopt an embedding table N1 ∈ R𝐾×𝑑

generated by a layer of R-GCN as the initial embedding table
E(0)
𝑐 ∈ R𝐾×𝑑 for the collaborative semantic graph G𝑐 . Then, we

utilize LightGCN [12] for encoding G𝑐 . LightGCN streamlines the
graph convolution operations by omitting feature transformation
and nonlinear activation components, enhancing recommendation
effectiveness while also facilitating the optimization of the model.
Specifically, the representations for items at the 𝑙-th layer of graph
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convolution in G𝑐 are derived as follows:

E(𝑙 )𝑐 = (D− 1
2

𝑐 CD
− 1

2
𝑐 )E(𝑙−1)𝑐 , (7)

where D𝑐 ∈ R𝐾×𝐾 is the degree matrix. We obtain 𝑙-layer rep-
resentations from the 𝑙-layer collaborative semantic graph, and
then generate the average entity embedding table 𝐸𝑐 using average
pooling:

Ê𝑐 = AvgPool( [E(0)𝑐 , E(1)𝑐 , . . . , E(𝑙 )𝑐 ]). (8)
Textual and Image Semantic Graph. User experience with actual
items often stems from multi-modal perception (e.g., when watch-
ing a movie, users not only focus on the plot and dialogue but are
also influenced by visual effects and the soundtrack, which together
shape their viewing experience). Meanwhile, the multi-modal fea-
tures of items provide rich and valuable information. In this section,
we propose modality-specific semantic graphs to comprehensively
model the multi-modal features of items. Grounded in the idea that
similar items are more inclined to interact than dissimilar items
[43], we evaluate the semantic relationship between two items
based on their similarity. In Section 4.2, we obtain the text features
X𝑡 ∈ R𝑁×𝑑𝑡 and image features X𝑣 ∈ R𝑁×𝑑𝑣 of the items. We cal-
culate the semantic relevance between modality-specific features
using cosine similarity:

A𝑚𝑖 𝑗 =
(𝒙𝑚
𝑖
)⊤𝒙𝑚

𝑗

∥𝒙𝑚
𝑖
∥∥𝒙𝑚

𝑗
∥ , (9)

where𝑚 ∈ {𝑡, 𝑣}, A𝑚 ∈ R𝑁×𝑁 . A higher value of A𝑚
𝑖 𝑗

indicates a
stronger semantic correlation between items 𝑖 and 𝑗 withinmodality
𝑚. Typically, the adjacency matrix of a graph is expected to be
nonnegative; however,A𝑖 𝑗 spans the interval [−1, 1]. Consequently,
we set the negative values to zero. Furthermore, common graph
structures tend to be much sparser than fully connected graphs,
which not only incurs higher computational costs but may also
introduce extraneous and insignificant edges. We perform 𝑘NN
sparsification [3] on the dense graph𝐴𝑚 . For each item 𝑖 , we retain
only the top-𝑘 edges with the highest confidence scores:

Ã𝑚𝑖 𝑗 =

{
1 if A𝑚

𝑖 𝑗
∈ top-𝑘 (A𝑚

𝑖
),

0 otherwise,
(10)

where Ã𝑚
𝑖 𝑗

is the sparsified adjacency matrix. Similar to Eq. (7),
we adapt the LightGCN to encode the modality-specific semantic
graph:

E(𝑙+1)𝑚 = (D− 1
2

𝑚 Ã𝑚D
− 1

2
𝑚 )E(𝑙 )𝑚 , (11)

where D𝑚 ∈ R𝑁×𝑁 denotes the degree matrix of the modality-
specific semantic graph. Consistent with the method used to ini-
tialize G𝑐 , we initialize the modality-specific semantic graph em-
bedding table E(0)𝑚 ∈ R𝑁×𝑑 using the embedding table N1 ∈ R𝐾×𝑑

enhanced by a layer of R-GCN. We obtain 𝑙-layer representations
from the 𝑙-layer modality-specific semantic graph, and then gener-
ate the entity embedding table using average pooling:

Ê𝑡 = AvgPool( [E(0)𝑡 , E(1)𝑡 , . . . , E(𝑙 )𝑡 ]), (12)

Ê𝑣 = AvgPool( [E(0)𝑣 , E(1)𝑣 , . . . , E(𝑙 )𝑣 ]), (13)

where Ê𝑡 is the average embedding table of textual semantic graph,
while Ê𝑣 is the average embedding table of the image semantic

graph. Ê𝑡 and Ê𝑣 capture semantic information frommultiple layers
of modality-specific semantic graphs, providing a more comprehen-
sive representation of the items.

While the textual and image semantic graphs specifically en-
hance items, we fused the two modality-specific semantic graphs
using a weighting function:

Ê𝑚 = 𝜆Ê𝑡 + (1 − 𝜆)Ê𝑣, (14)

where 𝜆 ∈ (0, 1) is the hyperparameter controling the fusion ratio.
Next, we fuse the original knowledge graph with the collabora-

tive semantic graph:

Ê𝛼 = AvgPool( [Ê𝑐 ,N(1) ]). (15)

Then, we fuse the multi-modal embeddings 𝐸𝑚 and Ê𝛼 :

Ê𝑓 𝑖𝑛𝑎𝑙 = Ê𝛼 [I] + Ê𝑚, (16)

where I represents the indices of common items between Ê𝛼 and
Ê𝑚 .

4.3 Multi-modal Semantic Graph Prompt
Learning For Recommendation

In Section 4.2, we generated the fused embeddings Ê𝑓 𝑖𝑛𝑎𝑙 from Ê𝑚
and Ê𝛼 . For a conversation 𝑠 ∈ 𝑆 , we can query the embedding
V𝑠 ∈ R𝑞×𝑑 of 𝑞 entities involved in the conversation 𝑠 from Ê𝑓 𝑖𝑛𝑎𝑙 .
We use RoBERTa to extract the embedding T𝑠 ∈ R𝑝×𝑑𝑐 of the
current conversation 𝑠 , where 𝑝 represents the number of tokens
in the conversational context, and 𝑑𝑐 represents the dimensionality
of the token embeddings. Next, we map V𝑠 to the same dimension
as T𝑠 using a bilinear function:

Ṽ𝑠 = W1V𝑠W2, (17)

whereW1 ∈ R𝑝×𝑞 andW2 ∈ R𝑑×𝑑𝑐 are weight matrix.
We fuse entities Ṽ𝑠 and conversation T𝑠 using a contrastive

learning:

𝐿𝑓 𝑢𝑠𝑒 = −(𝑙𝑜𝑔 𝑒𝑥𝑝 (T𝑠 · Ṽ𝑠/𝜏)∑Ω
𝛾 𝑒𝑥𝑝 (T𝑠 · T𝛾/𝜏)

+ 𝑙𝑜𝑔 𝑒𝑥𝑝 (Ṽ𝑠 · T𝑠/𝜏)∑Ω
𝛾 𝑒𝑥𝑝 (Ṽ𝑠 · Ṽ𝛾/𝜏)

),

(18)

where Ω denotes the number of negative examples of contrastive
learning and 𝜏 denotes the temperature coefficient. The final fused
entity V̂𝑠 = Ṽ𝑠 + Ts.

We adopt prompt learning [23] to make use of LLM in a simple
and flexible way. The final prompt r𝑠 for the recommendation task
consists of the following three parts:

r𝑠 = [V̂𝑠 ;O𝑟𝑒𝑐 ; 𝑠], (19)

where O𝑟𝑒𝑐 denotes embeddings for the recommendation task-
specific soft prompt (random initialization), and 𝑠 denotes the con-
versational context (word tokens). We chose DialoGPT [46] as the
base LLM, which uses a Transformer-based architecture and was
pre-trained on a large-scale conversation corpus extracted from
Reddit, as done in existing studies [6, 36].We input r𝑠 into DialoGPT
and apply a pooling layer to derive the multi-modal semantic graph
enhanced user preference embedding r̂𝑠 ∈ R𝑑 :

r̂𝑠 = Pooling(FDialoGPT (r𝑠 ;𝜃𝑟𝑒𝑐 )), (20)
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where 𝜃𝑟𝑒𝑐 denotes the trainable parameters, which consist of V̂𝑠
and O𝑟𝑒𝑐 . We use the last token representation of DialoGPT for
item recommendations or generation tasks.
Pre-training. Due to the semantic gap between the multi-modal
semantic graph enhanced prompt V̂𝑠 and the conversational context
𝑠 , we associate them through pre-training. Specifically, we employ
multi-modal semantic graph enhanced user preference embedding
r̂𝑠 to predict the entities contained in the current conversation 𝑠 .
The probability of entity 𝑖 is calculated as follows:

P𝑒𝑛𝑡𝑖𝑡𝑦 (𝑖) = Softmax(r̂𝑠 Ê
⊤
𝑓 𝑖𝑛𝑎𝑙 ). (21)

We combine the fuse loss with cross-entropy to optimize the
model parameters.

𝐿𝑝𝑟𝑒 (𝜃𝑟𝑒𝑐 ) = −
∑︁

𝑗∈𝑆𝑡𝑟𝑎𝑖𝑛

𝐾∑︁
𝑖=1

logP𝑗
𝑒𝑛𝑡𝑖𝑡𝑦

(𝑖 | r̂𝑠 , 𝜃𝑟𝑒𝑐 ) + 𝛿𝐿𝑓 𝑢𝑠𝑒 , (22)

where 𝐾 is the number of entities, 𝑆𝑡𝑟𝑎𝑖𝑛 denotes the set of all
conversations in the training set. 𝛿 is the hyper-parameter to control
the fuse loss weight.
Recommendation. The recommendation task predicts the proba-
bilities of all items. Similar to Eq. (21), we generate the probabilities
P𝑖𝑡𝑒𝑚 (𝑖) of the recommended items:

P𝑖𝑡𝑒𝑚 (𝑖) = Softmax(r̂𝑠 Ê
⊤
𝑓 𝑖𝑛𝑎𝑙 [I]) . (23)

Then we train the recommendation task using a cross-entropy
loss and fuse loss:

𝐿𝑟𝑒𝑐 (𝜃𝑟𝑒𝑐 ) = −
∑︁

𝑗∈𝑆𝑡𝑟𝑎𝑖𝑛

𝑁∑︁
𝑖=1

𝑦
𝑗
𝑖
logP𝑗

𝑖𝑡𝑒𝑚
(𝑖 | r̂𝑠 , 𝜃𝑟𝑒𝑐 ) + 𝛿𝐿𝑓 𝑢𝑠𝑒 , (24)

where𝑦 𝑗
𝑖
is the corresponding label of the item 𝑖 in the conversation

instance 𝑗 , and 𝑁 is the number of items.

4.4 Multi-modal Semantic Graph Prompt
Learning For Conversation

The conversation task aims to provide appropriate responses based
on the current user utterance. Previously, we modeled the mul-
tiple relationships between different entities. By leveraging the
entities present in various conversational contexts, we designed
a correlation semantic mapping that integrates the contexts of
all conversations in the training data. This approach allows us to
capture conversational contexts with semantic similarities to the
current conversational context, thereby enhancing the semantic
information of the current conversational context.

Specifically, for a conversational context 𝑠 , let 𝑄𝑠 be the set of
entities involved. We obtain the multi-modal semantic graph en-
hanced entity set �̂�𝑠 through the first-order adjacency relationships
of four types of semantic graphs (knowledge graph G𝑘𝑔 , collabo-
rative semantic graph G𝑐 , textual semantic graph G𝑡 , and image
semantic graph G𝑣 ). If there exists an edge connection between
entities, we will also include the entities connected by these edges
into the enhanced entity set �̂�𝑠 :

�̂�𝑠 = 𝑄𝑠 ∪
⋃

𝐺∈{G𝑘𝑔,G𝑐 ,G𝑡 ,G𝑣 }
{𝑒 𝑗 | ∃𝑒𝑖 ∈ 𝐸 (𝐺), 𝐴𝑖 𝑗 (𝐺) = 1}. (25)

Table 1: Statistics of the used datasets in our experiments.

Dataset # Conversations # Utterances # Entities/Items

ReDial 10,006 182,150 64,364/6,924
INSPIRED 1,001 35,811 17,321/1,123

After obtaining the multi-modal semantic graph enhanced entity
set �̂� for all conversational contexts 𝑆 , we represent the similarity
between different conversational contexts by the number of com-
mon entities. Similar to Eqs. (9, 10, 11), we construct the correlation
semantic mapping G𝑠 . The final enhanced representation of the
conversational context based on the correlation semantic mapping
is as follows:

Ê𝑠 = AvgPool( [E(0)
𝑠 ,E(1)

𝑠 ]), (26)

where E(0)
𝑠 ∈ R(𝑝×𝑑𝑐 )×𝑀 is initialized by encoding all conversa-

tional contexts into embeddings with RoBERTa, where 𝑀 is the
number of all conversational contexts. We utilize MLP to simulate
the neighbor aggregation of one layer of LightGCN and generate
the enhanced representations Ê𝑠 . For a conversational context 𝑠 ∈ 𝑆 ,
we fuse T̂𝑠 = T + Ṽ𝑠 and 𝑒𝑠 ∈ Ê𝑠 to generate the enhanced context
embedding T̃𝑠 :

T̃𝑠 = AvgPool( [Reshape(𝑒𝑠 ), T̂𝑠 ]) . (27)

The final prompt 𝑐𝑠 for the conversation task consists of the follow-
ing three parts:

c𝑠 = [T̃𝑠 ;O𝑐𝑜𝑣 ; 𝑠], (28)

where O𝑐𝑜𝑣 denotes the conversation task specific soft prompt
embeddings (random initialization), 𝑠 denotes the conversational
context (word tokens). Then we input c𝑠 into DialoGPT and apply
a pooling layer to derive embedding ĉ𝑠 . We use ĉ𝑠 to drive the loss
for learn 𝜃𝑔𝑒𝑛 . The optimization function for the conversation task
is shown as follows:

𝐿𝑔𝑒𝑛 (𝜃𝑔𝑒𝑛) = − 1
𝑌

∑︁
𝑖∈𝑆𝑡𝑟𝑎𝑖𝑛

𝑙𝑖∑︁
𝑗=1

logP(𝑤𝑖, 𝑗 | ĉ𝑠 ;𝜃𝑔𝑒𝑛 ;𝑤< 𝑗 ) (29)

where 𝑌 is the number of training contexts, 𝑙𝑖 represents the length
of the label utterance, and 𝑤< 𝑗 denotes the words preceding the
𝑗-th position.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. We validate the effectiveness of our model on two
widely used conversation recommendation datasets, ReDial [19]
and INSPIRED [10], similar to previous work [6, 36]. Both datasets
are specifically designed for conversational movie recommenda-
tion, consisting of realistic conversations between users and agents
about movie recommendations. We obtain movie stills from IMDb.
Detailed statistics are presented in Table 1.

5.1.2 Baselines. The CRS includes two tasks: recommendation
and conversation. Consequently, we compare our method with the
following representative methods:
• Popularity: A simple metric that ranks items based on their
occurrence frequency in the dataset.
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Table 2: Recommendation performance comparison on ReDial and INSPIRED datasets, with the best results in bold and
* indicating significant improvements over the best baseline (𝑝-value < 0.05). Unless otherwise stated, * marks significant
improvements and bold values denote the best performances in the following paper.

ReDial INSPIRED

Model Recall NDCG MRR Recall NDCG MRR

@1 @10 @50 @10 @50 @10 @50 @1 @10 @50 @10 @50 @10 @50

Popularity 0.011 0.053 0.183 0.029 0.057 0.021 0.027 0.031 0.155 0.322 0.085 0.122 0.064 0.071
TextCNN 0.010 0.066 0.187 0.033 0.059 0.023 0.028 0.025 0.119 0.245 0.066 0.094 0.050 0.056
BERT 0.027 0.142 0.307 0.075 0.112 0.055 0.063 0.049 0.189 0.322 0.112 0.141 0.088 0.095

ReDial 0.010 0.065 0.182 0.034 0.059 0.024 0.029 0.009 0.048 0.213 0.023 0.059 0.015 0.023
KBRD 0.033 0.150 0.311 0.083 0.118 0.062 0.070 0.042 0.135 0.236 0.088 0.109 0.073 0.077
KGSF 0.035 0.175 0.367 0.094 0.137 0.070 0.079 0.051 0.132 0.239 0.092 0.114 0.079 0.083
TREA 0.045 0.204 0.403 0.114 0.158 0.087 0.096 0.047 0.146 0.347 0.095 0.132 0.076 0.087
COLA 0.048 0.221 0.426 - - 0.086 0.096 - - - - - -
VRICR 0.054 0.244 0.406 0.138 0.174 0.106 0.114 0.043 0.141 0.336 0.091 0.134 0.075 0.085
UNICRS 0.065 0.241 0.423 0.143 0.183 0.113 0.125 0.085 0.230 0.398 0.149 0.187 0.125 0.133
DCRS 0.076 0.253 0.439 0.154 0.195 0.123 0.132 0.093 0.226 0.414 0.153 0.192 0.130 0.137

MSCRS 0.081* 0.264* 0.451* 0.161* 0.201* 0.128* 0.136* 0.096* 0.257* 0.425* 0.168* 0.202* 0.140* 0.148*

• BERT [8]: An extensively utilized pre-trained model designed
for text classification applications. We fine-tune BERT to forecast
a selection of potential items.

• DialogGPT [46]: It is a large-scale generative pre-trained model
trained on extensive dialogue data, specifically optimized for gen-
erating contextually relevant and fluent conversational responses

• GPT-2 [30]: A powerful benchmark for text generation that ben-
efits from extensive pre-training on language models.

• BART [18]: A denoising autoencoder pretraining model for gen-
eration tasks.

• Redial [19]: This model was introduced alongside the ReDial
dataset, which includes an autoencoder for recommendations
and a generation model based on hierarchical RNN.

• KBRD [4]: The method enhances recommendation and conver-
sation tasks by introducing an entity-based knowledge graph.

• KGSF [48]: This method enhances the information of entities and
words through entity-based and word-based knowledge graphs.

• TREA [22]: This method models recommendation and conversa-
tion tasks through a multi-layer inferable tree structure.

• COLA [24]: It enhances conversational recommendation systems
by enriching item and user representations through an interactive
user-item graph and retrieving similar conversations.

• VRICR [45]: This method enhances the original knowledge
graph through dynamic inference using variational Bayes.

• UNICRS [36]: This method combines the recommendation and
conversation sub-tasks into the same prompt learning paradigm.

• DCRS [6]: This method enhances recommendation and conver-
sation tasks by retrieving conversations that are similar to the
current conversation.

5.1.3 Evaluation Metrics. We evaluate the recommendation and
conversation tasks using different metrics. For recommendation,
we follow [6, 36] and adopt Recall@k (k=1, 10, 50), NDCG@k
(k=10, 50), and MRR@k (k=10, 50). For conversation, we apply
both automatic and human evaluations. Automatic metrics include
BLEU-N (N=2, 3), ROUGE-N (N=2, L) and Distinct-N (N=2, 3,
4). For human evaluation, we randomly select 100 responses from

each model and ask three annotators to score them on Fluency
and Informativeness (0–2 scale), then we compute the average
score for all test samples.

5.1.4 Implementation Details. We trained our proposed model on a
32GB V100 GPU. In our model, we use RoBERTa [25] to encode the
textual features of items and input tokens. We employ ViT [9] to ex-
tract the image features of movies, and use DialoGPT-small [46] as
the base LLM. The extracted textual features have a dimensionality
of 768, while the image features have a dimensionality of 1024. We
then map the features of different modalities to the same dimension.
We set the number of R-GCN [31] layers to 1. For the collaborative
semantic graph, text semantic graph, and image semantic graph,
we use a 3-layer of LightGCN [12] for encoding. We tune our soft
prompt between 10 and 50 for the recommendation and conversa-
tion tasks. The batch size is set to 64 for the recommendation task
and 8 for the conversation task. We use Adam [15] as the optimizer
for our model and adjust our learning rate between 1e-5 and 1e-3.

5.2 Evaluation on Recommendation Task
5.2.1 Automatic Evaluation. Table 2 shows the experimental re-
sults for the recommendation task. Our MSCRS model achieves
state-of-the-art performance, ranking first across all metrics on
ReDial and INSPIRED. Compared to the strongest baseline DCRS,
MSCRS achieves 0.081 (+6.5% for ReDial) and 0.096 (+3.2% for IN-
SPIRED) in Recall@1, indicating higher accuracy in satisfying users
immediate needs. For Recall@10, MSCRS achieves 0.264 (+4.3% for
ReDial) and 0.257 (+13.7% for INSPIRED), demonstrating superior
top-10 coverage. Additionally, Recall@50 scores of 0.451 (+2.7% for
ReDial) and 0.425 (+2.6% for INSPIRED) show thatMSCRSmaintains
high accuracy in longer recommendation lists.

Compared to knowledge-enhanced CRS models (KBRD, KGSF,
COLA, VRICR), MSCRS significantly improves recommendation
accuracy by leveragingmulti-modal semantic relationships. Against
LLM-based CRS models (UNICRS, DCRS), MSCRS outperforms
UNICRS and DCRS on all metrics. The superior performance of the
MSCRSmodel can be attributed to its ability to learn rich knowledge
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Table 3: Automatic evaluation for the conversation task on Redial and INSPIRED datasets.

ReDial INSPIRED

Model BLEU ROUGE DIST BLEU ROUGE DIST

-2 -3 -2 -L -2 -3 -4 -2 -3 -2 -L -2 -3 -4

DialogGPT 0.041 0.021 0.054 0.258 0.436 0.632 0.771 0.031 0.014 0.041 0.207 1.954 2.750 3.235
GPT-2 0.031 0.013 0.041 0.244 0.405 0.603 0.757 0.026 0.011 0.034 0.212 2.119 3.084 3.643
BART 0.024 0.011 0.031 0.229 0.432 0.615 0.705 0.018 0.008 0.025 0.208 1.920 2.501 2.670

ReDial 0.004 0.001 0.021 0.187 0.058 0.204 0.442 0.001 0.000 0.004 0.168 0.359 1.043 1.760
KBRD 0.038 0.018 0.047 0.237 0.070 0.288 0.488 0.021 0.007 0.029 0.218 0.416 1.375 2.320
KGSF 0.030 0.012 0.039 0.244 0.061 0.278 0.515 0.023 0.007 0.031 0.228 0.418 1.496 2.790
VRICR 0.021 0.008 0.027 0.137 0.107 0.286 0.471 0.011 0.001 0.025 0.187 0.853 1.801 2.827
TREA 0.022 0.008 0.039 0.175 0.242 0.615 1.176 0.013 0.002 0.027 0.195 0.958 2.565 3.411
COLA 0.026 0.012 - - 0.387 0.528 0.625 - - - - - -
UNICRS 0.045 0.021 0.058 0.285 0.433 0.748 1.003 0.022 0.009 0.029 0.212 2.686 4.343 5.520
DCRS 0.048 0.024 0.063 0.285 0.779 1.173 1.386 0.033 0.014 0.045 0.229 3.950 5.729 6.233

MSCRS 0.054* 0.027* 0.070* 0.294* 0.784* 1.332* 1.553* 0.040* 0.019* 0.052* 0.235* 4.197* 5.983* 6.556*

from three different semantic structures: the collaborative semantic
graph, the textual semantic graph, and the image semantic graph.
By combining these graph structures with higher-order semantic
relationships and prompt learning for LLMs, the MSCRS model
achieves significantly better results.

5.2.2 Ablation Study. Our recommendation method mainly en-
hances embeddings of items and item-related entities through the
collaborative semantic graph, text semantic graph, and image se-
mantic graph. To explore their impact on model performance, we
designed four ablation variants: (1) MSCRS w/o -co, removing the
collaborative semantic graph; (2)MSCRS w/o -t, removing the text
semantic graph; (3) MSCRS w/o -i, removing the image semantic
graph; and (4) MSCRS w/o -r, removing all three graph structures.
Recall@10 is used as the evaluation metric due to its simplicity and
consistent trends with Recall@1 and Recall@50.

From Figure 4 (a) and (b), it can be seen that removing any of
the three graphs results in drops in performance. Removing the col-
laborative semantic graph (MSCRS w/o -co) resulted in a decrease
in Recall@10, indicating its crucial role in capturing relationships
between entities. Removing the textual semantic graph (MSCRS
w/o -t) and the image semantic graph (MSCRS w/o -i) also results
in a decline in performance, emphasizing the importance of textual
and image information for recommendation quality. Finally, the
variant that removes all enhanced graph structures (MSCRS w/o
-r) exhibits the lowest Recall@10 value, further demonstrating the
necessity of combining multiple graph structures to improve model
performance. In summary, the ablation study shows that all the
collaborative semantic graph, textual semantic graph, and image
semantic graph improve the effectiveness of the recommendation.

5.3 Evaluation on Conversation Task
5.3.1 Automatic Evaluation. Table 3 presents the comparison of
BLEU, ROUGE, and DIST scores on the ReDial and INSPIRED
datasets. On the all dataset, MSCRS achieves the best performance
across all three metrics, showcasing its superior text generation
capability. These results highlight the outstanding conversation
generation performance of MSCRS across both datasets, which can

Table 4: Human evaluation for the conversation task on Re-
dial dataset.

Models Fluency Informativeness

ReDial 1.31 0.98
KGSF 1.21 1.16

GPT-2 1.56 1.52
BART 1.48 1.43
UNICRS 1.68 1.56
DCRS 1.74 1.62

MSCRS 1.79* 1.67*

be attributed to its ability to establish complex high-order associ-
ations between enhanced entity representations and text during
pre-training. Furthermore, the proposed correlation semantic map-
ping effectively enriches the semantic context, enabling MSCRS to
generate more informative and fluent responses.

5.3.2 Human Evaluation. Table 4 indicates that MSCRS excels in
fluency and informativeness, showcasing its robust capability to
generate high-quality conversations. This is likely due to our multi-
modal semantic awareness, which enhances conversation genera-
tion quality through more complex relationship modeling. ReDial
achieves the lowest scores in both metrics. KGSF shows an improve-
ment in informativeness but performs slightly worse in fluency,
suggesting progress in content richness but a need for further im-
provement in language naturalness. GPT-2 and BART perform well
in fluency and informativeness, validating the effectiveness of pre-
training techniques in natural language generation tasks. UNICRS
and DCRS outperform GPT-2 and BART in both metrics, with both
providing optimization approaches for the conversation genera-
tion task, thereby demonstrating their capabilities in generating
high-quality conversations.

5.3.3 Ablation Study. Our proposed model enhances response gen-
eration primarily through multi-modal semantic graph enhanced
entity and correlation semantic mapping. To verify the effectiveness
of these two modules, we designed different variants for ablation
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Figure 4: Ablation studies for the recommendation and con-
versation tasks on the ReDial and INSPIRED datasets.

experiments: (1)MSCRS w/o -s indicates that removing our pro-
posed multi-modal semantic enhanced entity; (2)MSCRS w/o -c
indicates removing the correlation semantic mapping enhancement
component; (3) MSCRS w/o -all indicates the removal of both the
multi-modal semantic graph enhanced entity component and the
correlation semantic mapping component.

From Figure 4 (c) and (d), we observe that in both datasets,
MSCRS w/o -s leads to a decline in the BLEU-2 score, indicating that
multi-modal semantic graph enhanced entities improve the quality
of response generation. Similarly, MSCRS w/o -c also results in a
more significant performance decline, demonstrating the impor-
tance of correlation semantic mapping in enhancing conversational
context and generating coherent and fluent conversation. The worst
performance is observed with MSCRS w/o -all, further validating
the indispensable role of these two modules in jointly enhancing
the model in conversation generation. These experiments verify
the independent effectiveness of the multi-modal semantic graph
enhanced entity components and the correlation semantic mapping
components.

5.4 Further Analysis.
5.4.1 Effect of 𝑘 . In our proposed image and textual semantic
graphs, we keep the top 𝑘 items with the highest semantic relevance
using the 𝑘-NN method [3]. We investigate the impact of different 𝑘
values (Eq. (10)) on the model’s performance. Specifically, we set the
𝑘 values to [5, 10, 20, 30, 50, 100]. From Figure 5 (a) and (b), we can
see that the ReDial and INSPIRED datasets exhibit similar trends in
𝑘 value variations. The Recall@10 for the ReDial dataset reaches a
higher peak at 𝑘 = 20, while the INSPIRED dataset achieves the best
performance at 𝑘 = 10. Overall, selecting an appropriate 𝑘 value is
crucial. A small 𝑘 value may fail to capture enough relevant items,
while a large 𝑘 value may introduce irrelevant noise, leading to a
decline in performance. In our paper, we use the optimal 𝑘 values
𝑘 = 20 on ReDial and 𝑘 = 10 on INSPIRED in other experiments.
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Figure 5: The impact of different 𝑘 and 𝜆 values on Recall@10
for the ReDial and INSPIRED datasets.

5.4.2 Effect of 𝜆. The parameter 𝜆 controls the fusion ratio be-
tween the textual semantic graph and the image semantic graph.
We investigate the impact of different fusion ratios of 𝜆 on model
performance. We adjust the value of 𝜆 within [0.1, 0.3, 0.5, 0.7, 0.9].
From Figure 5 (c) and (d), we observe that as 𝜆 varies, the Recall@10
metric exhibits similar trends on both the INSPIRED and ReDial
datasets. On the ReDial dataset, the Recall@10 value peaks around
𝜆 = 0.5 before slightly declining. Similarly, on the INSPIRED dataset,
the Recall@10 value reaches its peak around 𝜆 = 0.5 before starting
to decline. These results indicate that the fusion ratio significantly
influences model performance, and an optimal range of 𝜆 can bal-
ance the contributions of both textual and image modalities. We
use the optimal values 𝜆 = 0.5 on ReDial and 𝜆 = 0.5 on INSPIRED
in other experiments in our paper.

6 CONLUSION AND FUTUREWORK
In this paper, we propose MSCRS, a novel multi-modal semantic
graph prompt learning framework for CRS. Our approach integrates
textual, image, and collaborative semantic information by construct-
ing three semantic graphs to enhance entity representations and
user preference modeling. In addition, by incorporating prompt
learning with GNN-based neighborhood aggregation, MSCRS pro-
vides an LLM with topological cues, effectively guiding it to extract
relevant information from text inputs and generate high-quality
responses. Extensive experiments on recommendation and conver-
sational tasks demonstrate that MSCRS improves performance in
both item recommendation and response generation.
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